
UNIT-III
PART - B

Artifacts of the Process: The Artifact
Sets, Management Artifacts,
Engineering Artifacts, and Pragmatic
Artifacts.



Introduction

• Conventional software projects focused on the
sequential development of software artifacts:

➢Build the requirements

➢Construct a design model traceable to the
requirements

➢Build an implementation traceable to the
design model

➢Compile and test the implementation for
development



The Artifact Sets

• To make the development of a complete software
system manageable, distinct collections of
information are organized into artifacts sets.

• Each set comprises related artifacts that are
persistent and in a uniform representation
format.

• While a set represents a complete aspect of the
system, an artifact represents cohesive
information that are typically is developed and
reviewed as a single entity.



The Artifact Sets

• Life-cycle software artifacts are organized into five
distinct sets that are roughly partitioned by the
underlying language of the set:

➢Management (ad hoc textual formats)
➢ Requirements (organized text and models of the

problem space)
➢ Design (models of the solution space)
➢ Implementation (human readable programming

language and associated files)
➢ Deployment (machine-processable language and

associated files)



Overview of the artifact sets



The Management Set

• The management set captures the artifacts
associated with process planning and execution.

• These artifacts use adhoc notations, including
text, graphics, or whatever representation is
required to capture the “contracts” among
project personnel (project management,
architects, developers, testers, marketers,
administrators), among stakeholders (funding
authority, user, software project manager,
organization manager, regulatory agency), and
between project personnel and stakeholders.



The Management Set

• Management set artifacts are evaluated,
assessed, and measured through a
combination of the following:

➢Relevant stakeholders review

➢Analysis of changes between the current
version of the artifact and previous versions

➢Major milestone demonstrations of the
balance among all artifacts and the accuracy
of the business case and vision artifacts



The Engineering Sets

• The engineering sets consisting of
– The requirements set
– The design set
– The implementation set
– The deployment set

• The primary mechanism for evaluating the
evolving quality of each artifact set is the
transitioning of information from set to set, there
by maintaining a balance of understanding
among the requirements, design,
implementation, and deployment artifacts.



Requirements set

• Structured text is used for the vision statement,
which documents the project scope that supports
the contract between the funding authority and
the project team.

• UML notation is used for engineering
representations of requirements models (use
case models, domain models).

• The requirements set is the primary engineering
context for evaluating the other three
engineering artifact sets and is the basis for test
cases.



Requirements set

• Requirements artifacts are evaluated, assessed, and
measured through a combination of the following:
– Analysis of consistency with the release specification of

the management set
– Analysis of consistency between the vision and the

requirements models
– Mapping against the design, implementation, and

deployment sets to evaluate the consistency and
completeness and the semantic balance between
information in the different sets

– Analysis of changes between the current version of
requirements artifacts and previous versions

– Subjective review of the other dimensions of quality



Design set
• UML notation is used to engineer the design models for the

solution. The design set contains varying levels of
abstraction that represents the component of the solution
space (their identities, attributes, static relationships,
dynamic interactions).

• The design set is evaluated, assessed, and measured
through a combination of the following:
– Analysis of the internal consistency and quality of the design

model
– Analysis of consistency with the requirements models
– Translation into implementation and deployment sets and

notations to evaluate the consistency and completeness and the
semantic balance between information in the sets

– Analysis of changes between the current version of the design
model and previous versions

– Subjective review of other dimensions of quality



Implementation set
• The implementation set includes source code that represents the

tangible implementation of components and any executables
necessary for stand-alone testing of components.

• Implementation sets are human- readable formats that are
evaluated assessed, and measured through a combination of the
following:
– Analysis of consistency with the design models
– Translation into deployment set notations to evaluate the consistency

and completeness among artifacts sets
– Assessment of component source or executable files against relevant

evaluation criteria through inspection, analysis, demonstration, or
testing.

– Execution of stand-alone component test cases that automatically
compare expected results with actual result

– Analysis of changes between the current version of the
implementation set and previous versions

– Subjective review of other dimensions of quality



Deployment set

• The deployment set includes user deliverables
and machine language notations, executable
software, and the build scripts, installation
scripts, and executable target specific data
necessary to use the product in its target
environment.

• These machine language notations represents
the product components in the target from
intended for distribution to users.



Deployment set

• Deployment sets are evaluated, assessed, and measured
through a combination of the following:
– Testing against the usage scenarios and quality attributes

defined in the requirements set to evaluate the consistency and
completeness and the semantic balance between information in
the two sets.

– Testing the partitioning, replication, and allocation strategies in
mapping components of the implementation set to physical
resources of the deployment system

– Testing against the defined usage scenarios in the user manual
such as installation, user-oriented dynamic reconfiguration,
mainstreams usage , and anomaly management

– Analysis of changes between the current version of the
deployment set and previous versions.

– Subjective review of other dimensions of quality



Deployment set

• Each artifact set is the predominant development
focus of one phase of the life cycle; the other sets
take on check and balance roles.

• As shown in below figure, each phase has a
predominant focus: requirements are the focus of
the inception phase, design the elaboration
phase; implementation the construction phase;
and deployment the transition phase.

• The management artifacts also evolve, but a fairly
constant level across the life cycle.



Life-cycle focus on artifact sets



Deployment set

• Most of today’s software development tools map closely to
one of the five artifact sets:

➢ Management: scheduling, workflow, defect tracking,
change, management, documentation, spreadsheet,
resources management and presentation tools

➢ Requirements: requirements management tools
➢ Design: visual modelling tools
➢ Implementation: complier/debugger tools, code analysis

tools, test coverage analysis tools and test management
tools

➢ Deployment: test coverage and test automation tools,
network management tools, commercial components
(operating systems, GUIs ,DBMSs, networks ,middleware) ,
and installation tools



Overview of the artifact sets



Management Artifacts

• The management set includes several artifacts
that capture intermediate results and ancillary
information necessary to document the
product/process legacy, maintain the product,
improve the product, and improve the
process.



Business Case

• The business case artifact provides all the information
necessary to determine whether the project is worth
investing in.

• It details the expected revenue, expected cost, technical
and management plans, and backup data necessary to
demonstrate the risks and realism of the plans.

• The main purpose is to transform the vision into economic
terms so that an organization can make an accurate ROI
assessment.

• The financial forecasts are evolutionary, updated with more
accurate forecasts as the life cycle progresses.

• Below figure provides a default outline for a business case.



Business Case



Software Development Plan

• The software development plan (SDP)
elaborates the process framework into a fully
detailed plan.

• Two indications of a useful SDP are periodic
updating and understanding and acceptance
by managers and practitioners alike.

• Below figure provides a default outline for a
software development plan.



Software Development Plan



Work Breakdown Structure 

• Work breakdown structure (WBS) is the
vehicle for budgeting and collecting costs.

• To monitor and control a project's financial
performance, the software project manager
must have insight into project costs and how
they are expended.

• The structure of cost accountability is a
serious project planning constraint.



Software Change Order Database

• Managing change is one of the fundamental primitives of
an iterative development process.

• With greater change freedom, a project can iterate more
productively.

• This flexibility increases the content, quality, and number of
iterations that a project can achieve within a given
schedule.

• Change freedom has been achieved in practice through
automation, and today's iterative development
environments carry the burden of change management.

• Organizational processes that depend on manual change
management techniques have encountered major
inefficiencies.



Release Specifications

• The scope, plan, and objective evaluation criteria for
each baseline release are derived from the vision
statement as well as many other sources (make/buy
analyses, risk management concerns, architectural
considerations, shots in the dark, implementation
constraints, quality thresholds).

• These artifacts are intended to evolve along with the
process, achieving greater fidelity as the life cycle
progresses and requirements understanding matures.

• Below figure provides a default outline for a release
specification.



Release Specifications



Release Descriptions

• Release description documents describe the results of
each release, including performance against each of
the evaluation criteria in the corresponding release
specification.

• Release baselines should be accompanied by a release
description document that describes the evaluation
criteria for that configuration baseline and provides
substantiation (through demonstration, testing,
inspection, or analysis) that each criterion has been
addressed in an acceptable manner.

• Below figure provides a default outline for a release
description.



Release Descriptions



Status Assessments

• Status assessments provide periodic snapshots of
project health and status, including the software
project manager's risk assessment, quality
indicators, and management indicators.

• Typical status assessments should include a
review of resources, personnel staffing, financial
data (cost and revenue), top 10 risks, technical
progress (metrics snapshots), major milestone
plans and results, total project or product scope,
action items, and follow-through.



Environment

• An important emphasis of a modern approach is to
define the development and maintenance environment
as a first-class artifact of the process.

• A robust, integrated development environment must
support automation of the development process.

• This environment should include requirements
management, visual modeling, document automation,
host and target programming tools, automated
regression testing, and continuous and integrated
change management, and feature and defect tracking.



Deployment

• A deployment document can take many forms.
• Depending on the project, it could include several

document subsets for transitioning the product into
operational status.

• In big contractual efforts in which the system is delivered to
a separate maintenance organization, deployment artifacts
may include computer system operations manuals,
software installation manuals, plans and procedures for
cutover (from a legacy system), site surveys, and so forth.

• For commercial software products, deployment artifacts
may include marketing plans, sales rollout kits, and training
courses.



Management Artifact Sequences

• In each phase of the life cycle, new artifacts
are produced and previously developed
artifacts are updated to incorporate lessons
learned and to capture further depth and
breadth of the solution.

• Below figure identifies a typical sequence of
artifacts across the life-cycle phases.





Engineering Artifacts

• Most of the engineering artifacts are captured
in rigorous engineering notations such as
UML, programming languages, or executable
machine codes.

• Three engineering artifacts are explicitly
intended for more general review, and they
deserve further elaboration.



1. Vision document

• The vision document provides a complete vision for the
software system under development and supports the
contract between the funding authority and the
development organization.

• A project vision is meant to be changeable as
understanding evolves of the requirements, architecture,
plans, and technology.

• A good vision document should change slowly.
• Below figure provides a default outline for a vision

document.
• The vision statement should include a description of what

will be included as well as those features considered but
not included.



Typical vision document outline



2. Architecture description

• The architecture description provides an organized
view of the software architecture under development.

• It is extracted largely from the design model and
includes views of the design, implementation, and
deployment sets sufficient to understand how the
operational concept of the requirements set will be
achieved.

• The breadth of the architecture description will vary
from project to project depending on many factors.

• Below figure provides a default outline for an
architecture description.



Typical architecture description outline



3. Software User Manual

• The software user manual provides the user with the
reference documentation necessary to support the
delivered software.

• Although content is highly variable across application
domains, the user manual should include installation
procedures, usage procedures and guidance, operational
constraints, and a user interface description, at a minimum.

• For software products with a user interface, this manual
should be developed early in the life cycle because it is a
necessary mechanism for communicating and stabilizing an
important subset of requirements.

• The user manual should be written by members of the test
team, who are more likely to understand the user's
perspective than the development team.



Pragmatic Artifacts

• Pragmatic Artifacts is the conventional document-
driven approaches squandered incredible amounts of
engineering time on developing, polishing, formatting,
reviewing, updating, and distributing documents.

• It is an approach that redirects this effort of
documentation to simply improve rigor and easily
understanding of source of data or information.

• With use of smart browsing and navigation tools, it
also allows an on-line review of source of the native
information.

• This idea increases various cultural issues. Some of
them are given below.



Pragmatic Artifacts

• People want to review information but don’t
understand the language of the artifact
– Many interested reviewers of a particular artifact

will resist having to learn the engineering
language in which the artifact is written.

– It is not uncommon to find people who react as
follows: “I'm not going to learn UML, but I want to
review the design of this software, so give me a
separate description such as some flowcharts and
text that I can understand”.



Pragmatic Artifacts

• People want to review the information but
don’t have access to the tools

– It is not very common for the development
organization to be fully tooled; it is extremely rare
that the other stakeholders have any capability to
review the engineering artifacts on-line.



Pragmatic Artifacts

• Human-readable engineering artifacts should
use rigorous notations that are complete,
consistent, and used in a self-documenting
manner
– Properly spelled English words should be used for all

identifiers and descriptions.
– Acronyms and abbreviation should be used only

where they are well-accepted jargon in the context of
the component’s usage.

– No matter what language or tools are used, there is
no reason to abbreviate and encrypt modelling or
programming language source identifies.



Pragmatic Artifacts

• Useful documentation is self-defining: It is
documentation that gets used

– Above all, building self-documenting engineering
artifacts gives the development organization the
“right” to work solely in the engineering notations
and avoid separate documents to describe all the
details of a model, component, or test procedure.



Pragmatic Artifacts

• Paper is tangible; electronic artifacts are too
easy to change

– One reason some stakeholders prefer paper
documents is that once they are delivered, they
are tangible, static, and persistent.

– On-line and Web-based artifacts can be changed
easily and are viewed with more skepticism
because of their inherent volatility.


	UNIT-III PART - B
	Introduction
	The Artifact Sets
	The Artifact Sets
	Overview of the artifact sets
	The Management Set
	The Management Set
	The Engineering Sets
	Requirements set
	Requirements set
	Design set
	Implementation set
	Deployment set
	Deployment set
	Deployment set
	Life-cycle focus on artifact sets
	Deployment set
	Overview of the artifact sets
	Management Artifacts
	Business Case
	Business Case
	Software Development Plan
	Software Development Plan
	Work Breakdown Structure 
	Software Change Order Database
	Release Specifications
	Release Specifications
	Release Descriptions
	Release Descriptions
	Status Assessments
	Environment
	Deployment
	Management Artifact Sequences
	Slide 41 
	Engineering Artifacts
	1. Vision document
	Typical vision document outline
	2. Architecture description
	Typical architecture description outline



